Lie Groups

A. Kirtland

Outline

1 Basic Definitions

2 Lie group homomorphismsThe universal covering group

3 Lie subgroups

4 The Lie Algebra of a Lie Group

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Basic Definitions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Starting on Page 150

Definition (Lie group)

A **Lie group** is a smooth manifold w/o boundary that is also a group and the multiplication map $m: G \times G \to G$ and inversion $i: G \to G$ are smooth. Equivalently, the map $(g, h) \mapsto gh^{-1}$ is smooth.

Starting on Page 150

Definition (Lie group)

A **Lie group** is a smooth manifold w/o boundary that is also a group and the multiplication map $m: G \times G \to G$ and inversion $i: G \to G$ are smooth. Equivalently, the map $(g, h) \mapsto gh^{-1}$ is smooth.

Remark

A Lie group is also a topological group.

• an open submanifold of $\mathbb{M}(n, \mathbb{R})$

- an open submanifold of $\mathbb{M}(n, \mathbb{R})$
- multiplication smooth b/c entries are polynomials

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- an open submanifold of $\mathbb{M}(n, \mathbb{R})$
- multiplication smooth b/c entries are polynomials
- inversion by Cramer's rule (gives an algebraic formula for the inverse)

similarly, $GL(n, \mathbb{C})$ is a dimension $2n^2$ Lie group

Example: An Open Subgroup

group operations restrict and are smooth

Example: $GL^+(n, \mathbb{R})$

■ subgroup of GL(n, ℝ) as closed b/c det(AB) = det(A) det(B), det(A⁻¹) = 1/det(A)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example: $GL^+(n, \mathbb{R})$

■ subgroup of GL(n, ℝ) as closed b/c det(AB) = det(A) det(B), det(A⁻¹) = 1/det(A)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \blacksquare open subset b/c is preimage of (0, $\infty)$ under det, which is continuous

Example: $GL^+(n, \mathbb{R})$

- subgroup of GL(n, ℝ) as closed b/c det(AB) = det(A) det(B), det(A⁻¹) = 1/det(A)
- \blacksquare open subset b/c is preimage of (0, $\infty)$ under det, which is continuous
- group operations are restrictions of operations of $GL(n, \mathbb{R})$ so are smooth

 identifying ℝ* with GL(1, ℝ) shows that it is a 1-dimensional Lie group, and the same goes for ℂ*.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

 identifying ℝ* with GL(1, ℝ) shows that it is a 1-dimensional Lie group, and the same goes for ℂ*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• \mathbb{R}^+ is an open subgroup of this, so it one as well.

- identifying ℝ* with GL(1, ℝ) shows that it is a 1-dimensional Lie group, and the same goes for ℂ*.
- \mathbb{R}^+ is an open subgroup of this, so it one as well.
- $\mathbb{S}^1 \subset \mathbb{C}^*$ is a group under complex multiplication. With appropriate local coordinates, we can write multiplication and inversion as $(\theta_1, \theta_2) \mapsto \theta_1 + \theta_2$ and $\theta \mapsto -\theta$ (Problem 1-8), so this is a Lie group.

(with addition)

x - y

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

is linear and so smooth

Example: Direct Product group

$G_1 \times \cdots \times G_k$, $(g_1, \ldots, g_k)(g'_1, \ldots, g'_k) = (g_1g'_1, \ldots, g_kg'_k)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Example: Direct Product group

$$G_1 \times \cdots \times G_k$$
, $(g_1, \ldots, g_k)(g'_1, \ldots, g'_k) = (g_1g'_1, \ldots, g_kg'_k)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example

 \mathbb{T}^n

Definition (discrete (Lie) group)

Any group with the discrete topology is a topological group.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Definition (discrete (Lie) group)

Any group with the discrete topology is a topological group. If the group is countable, then it is 0-dim **discrete Lie group**.

Lie group homomorphisms

Definition (Lie group homomorphism)

A smooth map between Lie groups that is also a group homomorphism

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition (Lie group homomorphism)

A smooth map between Lie groups that is also a group homomorphism

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

The inclusion $\mathbb{S}^1 \hookrightarrow \mathbb{C}^*$

• $exp: (\mathbb{R}, +) \to (\mathbb{R}^*, *)$ with image \mathbb{R}^+ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- $exp: (\mathbb{R}, +) \to (\mathbb{R}^*, *)$ with image \mathbb{R}^+ .
- The inverse log gives a a Lie group isomorphism.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- $exp: (\mathbb{R}, +) \rightarrow (\mathbb{R}^*, *)$ with image \mathbb{R}^+ .
- The inverse log gives a a Lie group isomorphism.
- exp : $(\mathbb{C}, +) \rightarrow (\mathbb{C}^*, *)$ is surjective but not injective.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$\varepsilon: \mathbb{R} \to \mathbb{S}^1$$
, $t \mapsto e^{2\pi i t}$

has kernel \mathbb{Z} .

$$arepsilon:\mathbb{R} o\mathbb{S}^1$$
, $t\mapsto e^{2\pi i t}$

has kernel \mathbb{Z} .

$$\varepsilon^n : \mathbb{R}^n \to \mathbb{T}^n$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

has kernel \mathbb{Z}^n .

$\operatorname{GL}(n,\mathbb{R}) \to \mathbb{R}^*$ $\operatorname{GL}(n,\mathbb{C}) \to \mathbb{C}^*$

are smooth b/c it is a polynomial of matrix entries of input, and is a homomorphism b/c det $AB = \det A \det B$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example: conjugation

conjugation $C_g: G \to G$, $h \mapsto ghg^{-1}$ is smooth b/c multiplcation and inversion are smooth.

Example: conjugation

conjugation $C_g: G \to G$, $h \mapsto ghg^{-1}$ is smooth b/c multiplcation and inversion are smooth. This gives a Lie isomorphism as it has inverse $C_{g^{-1}}$.

Definition: Translation Maps

The translation maps L_g , $R_g : G \to G$ are diffeomorphisms of G with inverses L_{g^1} and $R_{g^{-1}}$.

$$L_g(h) = gh$$

 $R_g(h) = hg$

are smooth because they are the composition of smooth maps $G \xrightarrow{\iota_g} G \times G \xrightarrow{m} G$ where $\iota_g(h) = (g, h)$ and m is multiplication.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition: Translation Maps

The translation maps L_g , $R_g : G \to G$ are diffeomorphisms of G with inverses L_{g^1} and $R_{g^{-1}}$.

$$L_g(h) = gh$$

 $R_g(h) = hg$

are smooth because they are the composition of smooth maps $G \xrightarrow{\iota_g} G \times G \xrightarrow{m} G$ where $\iota_g(h) = (g, h)$ and m is multiplication. The translation maps are smooth, transitive group actions of G on itself.

Theorem: Every Lie group homomorphism has constant rank.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Let $F: G \to H$ be a Lie group homomorphism

Theorem: Every Lie group homomorphism has constant rank.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let $F: G \rightarrow H$ be a Lie group homomorphism
- Let e, e be the identities of G and H

Theorem: Every Lie group homomorphism has constant rank.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let $F: G \rightarrow H$ be a Lie group homomorphism
- Let *e*, *e* be the identities of *G* and *H*
- Let $g_0 \in G$
Theorem: Every Lie group homomorphism has constant rank.

- Let $F: G \rightarrow H$ be a Lie group homomorphism
- Let *e*, *e* be the identities of *G* and *H*
- Let $g_0 \in G$
- *F* homomorphism implies

$$F(L_{g_0}(g)) = F(g_0g) = F(g_0)F(g) = L_{F(g_0)}(F(g))$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem: Every Lie group homomorphism has constant rank.

- Let $F: G \rightarrow H$ be a Lie group homomorphism
- Let *e*, *e* be the identities of *G* and *H*
- Let $g_0 \in G$
- *F* homomorphism implies

$$F(L_{g_0}(g)) = F(g_0g) = F(g_0)F(g) = L_{F(g_0)}(F(g))$$

or $F \circ L_{g_0} = L_{F(g_0)} \circ F$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem: Every Lie group homomorphism has constant rank.

- Let $F : G \to H$ be a Lie group homomorphism
- Let *e*, *e* be the identities of *G* and *H*
- Let $g_0 \in G$
- *F* homomorphism implies

$$F(L_{g_0}(g)) = F(g_0g) = F(g_0)F(g) = L_{F(g_0)}(F(g))$$

or $F \circ L_{g_0} = L_{F(g_0)} \circ F$
 $dF_{g_0} \circ d(L_{g_0})_e = d(L_{f(g_0)})_{\tilde{e}} \circ dF_e$

• L_k for any k is a diffeomorphism so the $d(L_k)$ maps above are linear isomorphisms.

Theorem: Every Lie group homomorphism has constant rank.

- Let $F : G \to H$ be a Lie group homomorphism
- Let *e*, *e* be the identities of *G* and *H*
- Let $g_0 \in G$
- *F* homomorphism implies

$$F(L_{g_0}(g)) = F(g_0g) = F(g_0)F(g) = L_{F(g_0)}(F(g))$$

or $F \circ L_{g_0} = L_{F(g_0)} \circ F$
 $dF_{g_0} \circ d(L_{g_0})_e = d(L_{f(g_0)})_{\tilde{e}} \circ dF_e$

- L_k for any k is a diffeomorphism so the $d(L_k)$ maps above are linear isomorphisms.
- Composing a linear map with a linear isomorphism does not change the rank, so rank $dF_{g_0} = \operatorname{rank} dF_e$

Theorem: A Lie group homomorphism is a Lie group isomorphism iff it is bijective.

The global rank theorem says that b/c F is bijective and has constant rank, it is a diffeomorphism, and this inverse is a Lie homomorphism by definition.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

└─ The universal covering group

G has a universal covering group.

• For manifolds, the universal cover is a smooth manifold and the covering map is smooth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

└─ The universal covering group

G has a universal covering group.

- For manifolds, the universal cover is a smooth manifold and the covering map is smooth.
- For Lie groups, we'll show that the universal cover is also a Lie group, and the covering map is a Lie homomorphism.

└─ The universal covering group

G has a universal covering group.

- For manifolds, the universal cover is a smooth manifold and the covering map is smooth.
- For Lie groups, we'll show that the universal cover is also a Lie group, and the covering map is a Lie homomorphism.

• Let $\pi: \tilde{G} \to G$ be a smooth covering map.

└─ The universal covering group

G has a universal covering group.

- For manifolds, the universal cover is a smooth manifold and the covering map is smooth.
- For Lie groups, we'll show that the universal cover is also a Lie group, and the covering map is a Lie homomorphism.
- Let $\pi: \tilde{G} \to G$ be a smooth covering map.
- Note that $\pi \times \pi : \tilde{G} \times \tilde{G} \to G \times G$ is a smooth covering map.

The universal covering group

G has a universal covering group.

- For manifolds, the universal cover is a smooth manifold and the covering map is smooth.
- For Lie groups, we'll show that the universal cover is also a Lie group, and the covering map is a Lie homomorphism.
- Let $\pi: \tilde{G} \to G$ be a smooth covering map.
- Note that $\pi \times \pi : \tilde{G} \times \tilde{G} \to G \times G$ is a smooth covering map.
- By the lifting criterion, m ∘ (π × π) lifts uniquely to a map m̃ with m(ẽ, ẽ) = ẽ and such that the diagram commutes.

The universal covering group

G has a universal covering group.

- For manifolds, the universal cover is a smooth manifold and the covering map is smooth.
- For Lie groups, we'll show that the universal cover is also a Lie group, and the covering map is a Lie homomorphism.
- Let $\pi: \tilde{G} \to G$ be a smooth covering map.
- Note that $\pi \times \pi : \tilde{G} \times \tilde{G} \to G \times G$ is a smooth covering map.
- By the lifting criterion, m ∘ (π × π) lifts uniquely to a map m̃ with m(ẽ, ẽ) = ẽ and such that the diagram commutes.

$$\begin{array}{cccc} \tilde{G} \times \tilde{G} & \stackrel{\tilde{m}}{\longrightarrow} & \tilde{G} \\ \pi \times \pi & & & \downarrow \pi \\ G \times G & \stackrel{m}{\longrightarrow} & G \end{array}$$

└─ The universal covering group

Lifted multiplication and inversion are smooth. (2)

• Exercise: Let M, N, P be smooth manifolds, $F : M \to N$ be a local diffeomorphism. If $G : P \to M$ is continuous, then G is smooth iff $F \circ G$ is smooth.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

└─ The universal covering group

Lifted multiplication and inversion are smooth. (2)

- Exercise: Let M, N, P be smooth manifolds, F : M → N be a local diffeomorphism. If G : P → M is continuous, then G is smooth iff F ∘ G is smooth.
- Because π is a local diffeomorphism and $\pi \circ \tilde{m}$ is smooth, \tilde{m} is smooth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

└─The universal covering group

Lifted multiplication and inversion are smooth. (2)

- Exercise: Let M, N, P be smooth manifolds, $F : M \to N$ be a local diffeomorphism. If $G : P \to M$ is continuous, then G is smooth iff $F \circ G$ is smooth.
- Because π is a local diffeomorphism and $\pi \circ \tilde{m}$ is smooth, \tilde{m} is smooth.
- Similarly, there is a smooth lift $\tilde{\iota}$ such that $\tilde{\iota}(\tilde{e}) = \tilde{e}$ and the diagram below commutes:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

└─The universal covering group

Lifted multiplication and inversion are smooth. (2)

- Exercise: Let M, N, P be smooth manifolds, $F : M \to N$ be a local diffeomorphism. If $G : P \to M$ is continuous, then G is smooth iff $F \circ G$ is smooth.
- Because π is a local diffeomorphism and $\pi \circ \tilde{m}$ is smooth, \tilde{m} is smooth.
- Similarly, there is a smooth lift i such that i(e) = e and the diagram below commutes:

└─ The universal covering group

The universal covering group has an identity.

Defining multiplication and inversion as we expect, we have $\pi(xy) = \pi(x)\pi(y), \ \pi(x^{-1}) = \pi(x)^{-1}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

└─ The universal covering group

The universal covering group has an identity.

Defining multiplcation and inversion as we expect, we have π(xy) = π(x)π(y), π(x⁻¹) = π(x)⁻¹.
 Let f : G̃ → G̃, x ↦ ẽx

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

└─ The universal covering group

The universal covering group has an identity.

Defining multiplication and inversion as we expect, we have $\pi(xy) = \pi(x)\pi(y), \ \pi(x^{-1}) = \pi(x)^{-1}.$

• Let
$$f: \tilde{G} \to \tilde{G}, x \mapsto \tilde{e}x$$

•
$$\pi \circ f(x) = \pi(\widetilde{e})\pi(x) = e\pi(x) = \pi(x)$$
, so f is a lift of π

└─ The universal covering group

The universal covering group has an identity.

Defining multiplcation and inversion as we expect, we have $\pi(xy) = \pi(x)\pi(y), \ \pi(x^{-1}) = \pi(x)^{-1}.$

- Let $f: \tilde{G} \to \tilde{G}, x \mapsto \tilde{e}x$
- $\pi \circ f(x) = \pi(\tilde{e})\pi(x) = e\pi(x) = \pi(x)$, so f is a lift of π
- $\operatorname{id}_{\tilde{G}}$ is also a lift of π

└─ The universal covering group

The universal covering group has an identity.

- Defining multiplcation and inversion as we expect, we have $\pi(xy) = \pi(x)\pi(y), \ \pi(x^{-1}) = \pi(x)^{-1}.$
- Let $f: \tilde{G} \to \tilde{G}, x \mapsto \tilde{e}x$
- $\pi \circ f(x) = \pi(\tilde{e})\pi(x) = e\pi(x) = \pi(x)$, so f is a lift of π

- $\operatorname{id}_{\tilde{G}}$ is also a lift of π
- these maps agree at \tilde{e} as $f(\tilde{e}) = \tilde{m}(\tilde{e}, \tilde{e}) = \tilde{e}$

└─ The universal covering group

The universal covering group has an identity.

- Defining multiplcation and inversion as we expect, we have $\pi(xy) = \pi(x)\pi(y), \ \pi(x^{-1}) = \pi(x)^{-1}.$
- Let $f: \tilde{G} \to \tilde{G}, x \mapsto \tilde{e}x$
- $\pi \circ f(x) = \pi(\tilde{e})\pi(x) = e\pi(x) = \pi(x)$, so f is a lift of π
- $\operatorname{id}_{\tilde{G}}$ is also a lift of π
- these maps agree at \tilde{e} as $f(\tilde{e}) = \tilde{m}(\tilde{e}, \tilde{e}) = \tilde{e}$
- unique lifting property implies f is the identity, so $\tilde{e}x = x$

└─ The universal covering group

The universal covering group has an identity.

- Defining multiplcation and inversion as we expect, we have $\pi(xy) = \pi(x)\pi(y), \ \pi(x^{-1}) = \pi(x)^{-1}.$
- Let $f: \tilde{G} \to \tilde{G}, x \mapsto \tilde{e}x$
- $\pi \circ f(x) = \pi(\tilde{e})\pi(x) = e\pi(x) = \pi(x)$, so f is a lift of π
- $\operatorname{id}_{\tilde{G}}$ is also a lift of π
- these maps agree at \tilde{e} as $f(\tilde{e}) = \tilde{m}(\tilde{e}, \tilde{e}) = \tilde{e}$
- unique lifting property implies f is the identity, so $\tilde{e}x = x$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

similar proof shows $x\tilde{e} = x$

The universal covering group

(3) Multiplication in \tilde{G} is associative.

• Let
$$\alpha_L, \alpha_R : \tilde{G} \times \tilde{G} \times \tilde{G} \to \tilde{G}$$

$$\alpha_L(x, y, z) = (xy)z, \alpha_R(x, y, z) = x(yz)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

└─ The universal covering group

(3) Multiplication in \tilde{G} is associative.

• Let
$$\alpha_L, \alpha_R : \tilde{G} \times \tilde{G} \times \tilde{G} \to \tilde{G}$$

$$\alpha_L(x, y, z) = (xy)z, \alpha_R(x, y, z) = x(yz)$$

Both α_L and α_R are lifts of α(x, y, z) = π(x)π(y)π(z) because

 $\pi \circ \alpha_L(x, y, z) = (\pi(x)\pi(y))\pi(z) = \pi(x)(\pi(y)\pi(z)) = \pi \circ \alpha_R(x, y, z)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

└─ The universal covering group

(3) Multiplication in \tilde{G} is associative.

• Let
$$\alpha_L, \alpha_R : \tilde{G} \times \tilde{G} \times \tilde{G} \to \tilde{G}$$

$$\alpha_L(x, y, z) = (xy)z, \alpha_R(x, y, z) = x(yz)$$

Both α_L and α_R are lifts of α(x, y, z) = π(x)π(y)π(z) because

$$\pi \circ \alpha_L(x, y, z) = (\pi(x)\pi(y))\pi(z) = \pi(x)(\pi(y)\pi(z)) = \pi \circ \alpha_R(x, y, z)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• These three maps agree at $(\tilde{e}, \tilde{e}, \tilde{e})$, so they are equal.

└─ The universal covering group

(3) Multiplication in \tilde{G} is associative.

• Let
$$\alpha_L, \alpha_R : \tilde{G} \times \tilde{G} \times \tilde{G} \to \tilde{G}$$

$$\alpha_L(x, y, z) = (xy)z, \alpha_R(x, y, z) = x(yz)$$

Both α_L and α_R are lifts of α(x, y, z) = π(x)π(y)π(z) because

$$\pi \circ \alpha_L(x, y, z) = (\pi(x)\pi(y))\pi(z) = \pi(x)(\pi(y)\pi(z)) = \pi \circ \alpha_R(x, y, z)$$

- These three maps agree at $(\tilde{e}, \tilde{e}, \tilde{e})$, so they are equal.
- Exercise: Similarly, show that $x^{-1}x = xx^{-1} = \tilde{e}$.

└─ The universal covering group

(3) Multiplication in \tilde{G} is associative.

• Let
$$\alpha_L, \alpha_R : \tilde{G} \times \tilde{G} \times \tilde{G} \to \tilde{G}$$

$$\alpha_L(x, y, z) = (xy)z, \alpha_R(x, y, z) = x(yz)$$

Both α_L and α_R are lifts of α(x, y, z) = π(x)π(y)π(z) because

$$\pi \circ \alpha_L(x, y, z) = (\pi(x)\pi(y))\pi(z) = \pi(x)(\pi(y)\pi(z)) = \pi \circ \alpha_R(x, y, z)$$

- These three maps agree at $(\tilde{e}, \tilde{e}, \tilde{e})$, so they are equal.
- Exercise: Similarly, show that x⁻¹x = xx⁻¹ = ẽ.
 So G̃ is a group!

└─ The universal covering group

(3) Multiplication in \tilde{G} is associative.

• Let
$$\alpha_L, \alpha_R : \tilde{G} \times \tilde{G} \times \tilde{G} \to \tilde{G}$$

$$\alpha_L(x, y, z) = (xy)z, \alpha_R(x, y, z) = x(yz)$$

Both α_I and α_R are lifts of $\alpha(x, y, z) = \pi(x)\pi(y)\pi(z)$ because

$$\pi \circ \alpha_L(x, y, z) = (\pi(x)\pi(y))\pi(z) = \pi(x)(\pi(y)\pi(z)) = \pi \circ \alpha_R(x, y, z)$$

- These three maps agree at $(\tilde{e}, \tilde{e}, \tilde{e})$, so they are equal.
- Exercise: Similarly, show that $x^{-1}x = xx^{-1} = \tilde{e}$.
- So \tilde{G} is a group!
- Problem 7-5: Show that the universal covering group is unique up to Lie group isomorphism. (日本本語を本書を本書を入事)の(で)

Lie subgroups

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Definition: Lie subgroup

A subgroup of G with a topology and smooth structure that makes it an immersed submanifold of G.

Theorem: Embedded subgroups are Lie subgroups.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

■ *G*=Lie group

Theorem: Embedded subgroups are Lie subgroups.

- *G*=Lie group
- $H \subset G$ is a subgroup and an embedded submanifold.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem: Embedded subgroups are Lie subgroups.

- *G*=Lie group
- $H \subset G$ is a subgroup and an embedded submanifold.
- Want to show multiplication and inversion are smooth.

Lie Groups

Theorem: Embedded subgroups are Lie subgroups.

- G=Lie group
- $H \subset G$ is a subgroup and an embedded submanifold.
- Want to show multiplication and inversion are smooth.
- Recall 5.30, a smooth map to an manifold whose image is contained in an embedded submanifold is smooth as a map to the submaifold.

Lie Groups

Theorem: Embedded subgroups are Lie subgroups.

- G=Lie group
- $H \subset G$ is a subgroup and an embedded submanifold.
- Want to show multiplication and inversion are smooth.
- Recall 5.30, a smooth map to an manifold whose image is contained in an embedded submanifold is smooth as a map to the submaifold.
- Multiplication is smooth as a map H × H → G and has image contained in H, so it is also smooth as a map into H

Lie subgroups

Theorem: Open subgroups of Lie groups are unions of connected components.

• H=open subgroup in G

Theorem: Open subgroups of Lie groups are unions of connected components.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- *H*=open subgroup in *G*
- H is embedded

Theorem: Open subgroups of Lie groups are unions of connected components.

- H= open subgroup in G
- H is embedded
- for all g, gH are the images under the diffeomorphism L_g and are therefore open in G

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem: Open subgroups of Lie groups are unions of connected components.

- *H*=open subgroup in *G*
- H is embedded
- for all g, gH are the images under the diffeomorphism L_g and are therefore open in G

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

■ So *G* − *H* is open, *H* is closed, and because *H* is open and closed it must be a union of components

Definition: The subgroup generated by S

The subgroup generated by a subset $S \subset G$ is the smallest subgroup containing S.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition: The subgroup generated by S

The subgroup generated by a subset $S \subset G$ is the smallest subgroup containing S.

Exercise

Show this subgroup is the set of all elements that can be written as finite products of elements of S and their inverses.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem: neighborhoods of the identity generate more specific groups.

• Let W be an neighbrhood of the identity of G.

Theorem: neighborhoods of the identity generate more specific groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let W be an neighborhood of the identity of G.
Let W⁻¹ = {g⁻¹ : g ∈ W}.

Theorem: neighborhoods of the identity generate more specific groups.

• Let W be an neighbrhood of the identity of G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let $W^{-1} = \{g^{-1} : g \in W\}.$
- Let $AB = \{ab : a \in A, b \in B\}$.

W generates an open subgroup of G.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Let
$$W_1 = W \cup W^{-1}$$

W generates an open subgroup of G.

• Let
$$W_1 = W \cup W^{-1}$$

• Let $W_k = W_1 W_{k-1} = \bigcup_{g \in W_1} L_g(W_{k-1})$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

W generates an open subgroup of G.

• Let
$$W_1 = W \cup W^{-1}$$

• Let
$$W_k = W_1 W_{k-1} = \cup_{g \in W_1} L_g(W_{k-1})$$

• W^{-1} is open because inversion is a diffeomorphism

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

W generates an open subgroup of G.

• Let
$$W_1 = W \cup W^{-1}$$

• Let
$$W_k = W_1 W_{k-1} = \cup_{g \in W_1} L_g(W_{k-1})$$

- W^{-1} is open because inversion is a diffeomorphism
- W_k is open because for all g, L_g is a diffeomorphism

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

W generates an open subgroup of G.

• Let
$$W_1 = W \cup W^{-1}$$

• Let
$$W_k = W_1 W_{k-1} = \cup_{g \in W_1} L_g(W_{k-1})$$

- W^{-1} is open because inversion is a diffeomorphism
- W_k is open because for all g, L_g is a diffeomorphism
- By the exercise mentioned before, $H = \bigcup_{k=1}^{\infty} W_k$, so is open.

If W is connected, then it generates a connected open subgroup of G.

W⁻¹ is also connected because it is the image of W under a diffeomorphism.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- *W*⁻¹ is also connected because it is the image of *W* under a diffeomorphism.
- *W* ∪ *W*⁻¹ is the union of two connected sets with the identity in common and so is connected

- *W*⁻¹ is also connected because it is the image of *W* under a diffeomorphism.
- $W \cup W^{-1}$ is the union of two connected sets with the identity in common and so is connected
- By induction, $W_k = m(W_1 \times W_{k-1})$ is connected because m is continuous.

- *W*⁻¹ is also connected because it is the image of *W* under a diffeomorphism.
- *W* ∪ *W*⁻¹ is the union of two connected sets with the identity in common and so is connected
- By induction, $W_k = m(W_1 \times W_{k-1})$ is connected because m is continuous.
- So H, the union of W_k , is connected because they all contain the identity.

- *W*⁻¹ is also connected because it is the image of *W* under a diffeomorphism.
- *W* ∪ *W*⁻¹ is the union of two connected sets with the identity in common and so is connected
- By induction, $W_k = m(W_1 \times W_{k-1})$ is connected because m is continuous.
- So H, the union of W_k , is connected because they all contain the identity.
- H is also closed as shown before, so if G is connected, then H = G.

The identity component

• Definition: the component G_0 of G containing the identity

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Definition: the component G_0 of G containing the identity
- Problem 7-7: G₀ is a normal subgroup of G and is the only connected open subgroup. Every connected component of G is diffeomorphic to G₀.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem: The kernel of a Lie group homomorphism is a properly embedded Lie subgroup.

• Let $F : G \to H$ be a Lie group homomorphism, so it has constant rank.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem: The kernel of a Lie group homomorphism is a properly embedded Lie subgroup.

- Let $F : G \to H$ be a Lie group homomorphism, so it has constant rank.
- Recall that each level set of a constant rank map is a properly embedded submanifold of codimension rank F

Theorem: The kernel of a Lie group homomorphism is a properly embedded Lie subgroup.

- Let $F : G \to H$ be a Lie group homomorphism, so it has constant rank.
- Recall that each level set of a constant rank map is a properly embedded submanifold of codimension rank F

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Applying this to ker F = F⁻¹(ẽ) and using that fact that ker F is a subgroup gives us that it is a Lie subgroup

Theorem: The image of an injective Lie group homomorphism can be made into an immersed submanifold.

• Let $F : G \to H$ be an injective Lie group homomorphism.

Theorem: The image of an injective Lie group homomorphism can be made into an immersed submanifold.

• Let $F : G \to H$ be an injective Lie group homomorphism.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

By the global rank theorem, F is a smooth immersion

Theorem: The image of an injective Lie group homomorphism can be made into an immersed submanifold.

- Let $F : G \rightarrow H$ be an injective Lie group homomorphism.
- By the global rank theorem, *F* is a smooth immersion
- Recall 5.18, that the image of injective smooth immersions F can be uniquely made into immersed submanifolds with F a diffeomorphism onto the image.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem: The image of an injective Lie group homomorphism can be made into an immersed submanifold.

- Let $F : G \to H$ be an injective Lie group homomorphism.
- By the global rank theorem, *F* is a smooth immersion
- Recall 5.18, that the image of injective smooth immersions F can be uniquely made into immersed submanifolds with F a diffeomorphism onto the image.

• F(G) is a Lie subgroup of H because G is a Lie group.

Theorem: The image of an injective Lie group homomorphism can be made into an immersed submanifold.

- Let $F : G \to H$ be an injective Lie group homomorphism.
- By the global rank theorem, F is a smooth immersion
- Recall 5.18, that the image of injective smooth immersions F can be uniquely made into immersed submanifolds with F a diffeomorphism onto the image.
- F(G) is a Lie subgroup of H because G is a Lie group.
- so *F* is a Lie group isomorphism

Examples: Embedded Lie subgroups of $GL(n, \mathbb{R})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Example

 $\operatorname{GL}^+(n,\mathbb{R})\subset\operatorname{GL}(n,\mathbb{R})$ is an open subgroup

Examples: Embedded Lie subgroups of $GL(n, \mathbb{R})$

Example

 $\operatorname{GL}^+(n,\mathbb{R})\subset\operatorname{GL}(n,\mathbb{R})$ is an open subgroup

Example

 $SL(n, \mathbb{R})$, the subset of $GL(n, \mathbb{R})$ with determinant 1, is the kernel of det : $GL(n, \mathbb{R}) \to \mathbb{R}^*$ with rank $n^2 - 1$ because det is surjective, so is a smooth submersion and so any level set has codimension 1

・ロト・日本・日本・日本・日本・日本

Examples: Embedded Lie subgroups of $GL(n, \mathbb{R})$

Example

 $\operatorname{GL}^+(n,\mathbb{R})\subset\operatorname{GL}(n,\mathbb{R})$ is an open subgroup

Example

 $SL(n, \mathbb{R})$, the subset of $GL(n, \mathbb{R})$ with determinant 1, is the kernel of det : $GL(n, \mathbb{R}) \to \mathbb{R}^*$ with rank $n^2 - 1$ because det is surjective, so is a smooth submersion and so any level set has codimension 1

Example

 $\beta : \operatorname{GL}(n, \mathbb{C}) \to \operatorname{GL}(2n, \mathbb{R})$ defined by replacing each entry a + ibwith the block $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ We can check that β is an injective Lie group homomorphism whose image is a properly embedded subgroup of $\operatorname{GL}(2n, \mathbb{R})$.

Examples with $\ensuremath{\mathbb{C}}$

Example

 $\mathbb{S}^1 \subset \mathbb{C}^*$ as it is a subgroup and an embedded submanifold

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Examples with $\ensuremath{\mathbb{C}}$

Example

 $\mathbb{S}^1 \subset \mathbb{C}^*$ as it is a subgroup and an embedded submanifold

Example

 $SL(n, \mathbb{C}) \subset GL(n, \mathbb{C})$ just as with the real case, but with dimension $2n^2 - 2$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

 For V a real or complex vector space, GL(V) is a group under composition.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

GL(V)

 For V a real or complex vector space, GL(V) is a group under composition.

Any finite basis for V determines an isomorphism with $GL(n, \mathbb{R})$ or $GL(n, \mathbb{C})$, so it's a Lie group

GL(V)

- For *V* a real or complex vector space, GL(*V*) is a group under composition.
- Any finite basis for V determines an isomorphism with $GL(n, \mathbb{R})$ or $GL(n, \mathbb{C})$, so it's a Lie group
- The transition map between any two such isomorphisms is of the form A → ABA⁻¹, which is smooth, so there is a diffeomorphism between them and the manifold structure on GL(V) is coordinate-independent
Example: non-embedded Lie subgroup

The dense curve in the Torus $\gamma: \mathbb{R} \to \mathbb{T}^2$ is an immersed Lie subgroup b/c γ is an injective Lie homomorphism.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Lie Algebra of a Lie Group

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lie Bracket

The Lie bracket of two vector fields X, Y is

$$[X, Y]f = XYf - YXf$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lie Bracket

The Lie bracket of two vector fields X, Y is

[X, Y]f = XYf - YXf

• [X, Y] for X, Y smooth vector fields is a smooth vector field

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lie Bracket

The Lie bracket of two vector fields X, Y is

$$[X, Y]f = XYf - YXf$$

[X, Y] for X, Y smooth vector fields is a smooth vector field
For F a diffeomorphism, F_{*} [X, Y] = [F_{*}X, F_{*}Y]

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Definition

A vector field X on G is left-invariant if it is invariant under all left translations, or it is L_g -related to itself for all g.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition

A vector field X on G is left-invariant if it is invariant under all left translations, or it is L_g -related to itself for all g. Explicitly, for all g, h,

$$d(L_g)_h(X_h) = X_{gh}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A vector field X on G is left-invariant if it is invariant under all left translations, or it is L_g -related to itself for all g. Explicitly, for all g, h,

$$d(L_g)_h(X_h) = X_{gh}$$

Because L_g is a diffeomorphism, $(L_g)_*X$ is defined as $((L_g)_*X)_q = d(L_g)_{(L_g)^{-1}(q)}(X_{(L_g)^{-1}(q)})$, which gives us the equivalent condition

$$(L_g)_*X = X$$

the set of left-invariant vector fields is closed under the Lie bracket

$$(L_g)_*[X, Y] = [(L_g)_*X, (L_g)_*Y] = [X, Y]$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

Properties of the Lie Bracket

Bilinear: for $a, b \in \mathbb{R}$, [aX + bY, Z] = a[X, Z] + b[Y, Z]

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Properties of the Lie Bracket

Bilinear: for $a, b \in \mathbb{R}$, [aX + bY, Z] = a[X, Z] + b[Y, Z]

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• Antisymmetric: [X, Y] = -[Y, X]

Properties of the Lie Bracket

- Bilinear: for $a, b \in \mathbb{R}$, [aX + bY, Z] = a[X, Z] + b[Y, Z]
- Antisymmetric: [X, Y] = -[Y, X]
- Jacobi Identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition: Lie algebra

A Lie algebra over \mathbb{R} is a real vector space \mathfrak{g} with a bracket from $\mathfrak{g} \times \mathfrak{g}$ to \mathfrak{g} denoted $(X, Y) \mapsto [X, Y]$ that is bilinear, antisymmetric, and satisfies the Jacobi identity.

Definition: Lie algebra

A Lie algebra over \mathbb{R} is a real vector space \mathfrak{g} with a bracket from $\mathfrak{g} \times \mathfrak{g}$ to \mathfrak{g} denoted $(X, Y) \mapsto [X, Y]$ that is bilinear, antisymmetric, and satisfies the Jacobi identity.

Remark

The Jacobi identity is a kind of substitute for associativity.

Definition: Lie algebra

A Lie algebra over \mathbb{R} is a real vector space \mathfrak{g} with a bracket from $\mathfrak{g} \times \mathfrak{g}$ to \mathfrak{g} denoted $(X, Y) \mapsto [X, Y]$ that is bilinear, antisymmetric, and satisfies the Jacobi identity.

Remark

The Jacobi identity is a kind of substitute for associativity.

A Lie subalgebra is a linear subspace that is closed under the bracket.

Example

For a Lie group, Lie(G), the set of all left-invariant smooth vector fields, is a Lie subalgebra of $\mathfrak{X}(G)$ (which is a Lie algebra no matter what).

Examples: General vector space

• $\mathfrak{gl}(V)$, the set of (not necessarily invertible) linear maps from V to itself is a Lie algebra under the commutator bracket $[A, B] = A \circ B - B \circ A$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples: General vector space

- $\mathfrak{gl}(V)$, the set of (not necessarily invertible) linear maps from V to itself is a Lie algebra under the commutator bracket $[A, B] = A \circ B B \circ A$.
- any vector space can be made into an abelian Lie algebra with the zero bracket

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00