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Definition (Lie group)

A Lie group is a smooth manifold w/o boundary that is also a
group and the multiplication map m: G x G — G and inversion
i: G — G are smooth. Equivalently, the map (g, h) — gh™! is
smooth.
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Definition (Lie group)

A Lie group is a smooth manifold w/o boundary that is also a
group and the multiplication map m: G x G — G and inversion
i: G — G are smooth. Equivalently, the map (g, h) — gh™! is
smooth.

RENEILS

A Lie group is also a topological group.
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Lie Groups

L Basic Definitions

Example: GL(n, R)

m an open submanifold of M(n, R)
m multiplication smooth b/c entries are polynomials

m inversion by Cramer’s rule (gives an algebraic formula for the
inverse)

similarly, GL(n, C) is a dimension 2n? Lie group
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Example: GL*(n, R)

m subgroup of GL(n, R) as closed b/c det(AB) = det(A) det(B),
det(A~1) = 1/ det(A)

m open subset b/c is preimage of (0, c0) under det, which is
continuous

m group operations are restrictions of operations of GL(n, R) so
are smooth
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L Basic Definitions

Examples: R*, C*

m identifying R* with GL(1, R) shows that it is a 1-dimensional
Lie group, and the same goes for C*.

m RT is an open subgroup of this, so it one as well.

m S! C C* is a group under complex multiplication. With
appropriate local coordinates, we can write multiplication and
inversion as (61, 602) — 601 + 6> and 6 — —6 (Problem 1-8), so
this is a Lie group.
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(with addition)

is linear and so smooth
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Example: Direct Product group

Gy x - x G, (g1,---, gi)(gt -, g.) = (gigl, - - -, gk&1)

']I‘n
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L Basic Definitions

Definition (discrete (Lie) group)

Any group with the discrete topology is a topological group. If the
group is countable, then it is 0-dim discrete Lie group.
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Definition (Lie group homomorphism)

A smooth map between Lie groups that is also a group
homomorphism

The inclusion St — C*
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LLie group homomorphisms

Example: Exp

mexp: (R, +) — (R*, *) with image RT.
m The inverse log gives a a Lie group isomorphism.

m exp: (C,+) — (C*, %) is surjective but not injective.
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Lie Groups

LLie group homomorphisms

Example: ¢

e:R — St 2t

has kernel Z.
e":R" = T"

has kernel Z".
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LLie group homomorphisms

Example: det

GL(n,R) —» R*
GL(n,C) —» C*

are smooth b/c it is a polynomial of matrix entries of input, and is
a homomorphism b/c det AB = det Adet B.
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Lie Groups

LLie group homomorphisms

Example: conjugation

conjugation Cg : G — G, h+— ghg ™! is smooth b/c multiplcation

and inversion are smooth. This gives a Lie isomorphism as it has
inverse Co—1.
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Definition: Translation Maps

The translation maps Lg, R; : G — G are diffeomorphisms of G
with inverses L,1 and Rg-1.

Lg(h) = gh

Rg(h) = hg
are smooth because they are the composition of smooth maps

G253 GxG—">G where tg(h) = (g, h) and mis
multiplication.
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LLie group homomorphisms

Definition: Translation Maps

The translation maps Lg, R; : G — G are diffeomorphisms of G
with inverses L,1 and Rg-1.

Rg(h) = hg
are smooth because they are the composition of smooth maps

G253 GxG—">G where tg(h) = (g, h) and mis
multiplication. The translation maps are smooth, transitive group
actions of G on itself.
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Theorem: Every Lie group homomorphism has constant
rank.

Let F: G — H be a Lie group homomorphism
Let e, € be the identities of G and H

Letgp € G

F homomorphism implies

F(Lg(g)) = Flgog) = F(go)F(g) = Lr(g)(F(8))
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Theorem: Every Lie group homomorphism has constant
rank.

Let F: G — H be a Lie group homomorphism
Let e, € be the identities of G and H

Letgp € G

F homomorphism implies

F(Lg(g)) = Flgog) = F(go)F(g) = Lr(g)(F(8))
or Fo Lgo = LF(go) oF
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rank.

Let F: G — H be a Lie group homomorphism
Let e, € be the identities of G and H

Letgp € G

F homomorphism implies

F(Lg(g)) = F(gog) = F(go)F (&) = Lr(g)(F(g))
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dFg, o d(Lgy)e = d(Ls(gy))e © dFe

Lk for any k is a diffeomorphism so the d(Lx) maps above are
linear isomorphisms.
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LLie group homomorphisms

Theorem: Every Lie group homomorphism has constant
rank.

Let F: G — H be a Lie group homomorphism
Let e, € be the identities of G and H

Letgp € G

F homomorphism implies

F(Lg(g)) = F(gog) = F(go)F (&) = Lr(g)(F(g))
or Fo Lgo = LF(go) oF
dFg, o d(Lgy)e = d(Ls(gy))e © dFe

Lk for any k is a diffeomorphism so the d(Lx) maps above are
linear isomorphisms.

Composing a linear map with a linear isomorphism does not
change the rank, so rank df,, = rank dF,



Lie Groups

LLie group homomorphisms

Theorem: A Lie group homomorphism is a Lie group
isomorphism iff it is bijective.

The global rank theorem says that b/c F is bijective and has
constant rank, it is a diffeomorphism, and this inverse is a Lie
homomorphism by definition.
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G has a universal covering group.

m For manifolds, the universal cover is a smooth manifold and
the covering map is smooth.

m For Lie groups, we'll show that the universal cover is also a
Lie group, and the covering map is a Lie homomorphism.

m Let 7: G — G be a smooth covering map.

m Note that 7 x 7 : G x G — G x G is a smooth covering map.



Lie Groups
LLie group homomorphisms

LThe universal covering group

G has a universal covering group.

m For manifolds, the universal cover is a smooth manifold and
the covering map is smooth.

m For Lie groups, we'll show that the universal cover is also a
Lie group, and the covering map is a Lie homomorphism.

m Let 7: G — G be a smooth covering map.
m Note that 7 x 7 : G x G — G x G is a smooth covering map.

m By the lifting criterion, mo (7 x 7) lifts uniquely to a map m
with m(€, €) = é and such that the diagram commutes.
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LThe universal covering group

G has a universal covering group.

m For manifolds, the universal cover is a smooth manifold and
the covering map is smooth.

m For Lie groups, we'll show that the universal cover is also a
Lie group, and the covering map is a Lie homomorphism.

m Let 7: G — G be a smooth covering map.
m Note that 7 x 7 : G x G — G x G is a smooth covering map.

m By the lifting criterion, mo (7 x 7) lifts uniquely to a map m
with m(€, €) = é and such that the diagram commutes.

Gx6G "y G
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LThe universal covering group

Lifted multiplication and inversion are smooth. (2)

m Exercise: Let M, N, P be smooth manifolds, F : M — N be a
local diffeomorphism. If G : P — M is continuous, then G is
smooth iff F o G is smooth.
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m Because 7 is a local diffeomorphism and 7 o /i is smooth, m is
smooth.
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LThe universal covering group

Lifted multiplication and inversion are smooth. (2)

m Exercise: Let M, N, P be smooth manifolds, F : M — N be a
local diffeomorphism. If G : P — M is continuous, then G is
smooth iff F o G is smooth.

m Because 7 is a local diffeomorphism and 7 o /i is smooth, m is
smooth.

m Similarly, there is a smooth lift 7 such that 7(€) = € and the
diagram below commutes:
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LLie group homomorphisms

LThe universal covering group

Lifted multiplication and inversion are smooth. (2)

m Exercise: Let M, N, P be smooth manifolds, F : M — N be a
local diffeomorphism. If G : P — M is continuous, then G is
smooth iff F o G is smooth.

m Because 7 is a local diffeomorphism and 7 o /i is smooth, m is
smooth.

m Similarly, there is a smooth lift 7 such that 7(€) = € and the
diagram below commutes:

N

O o
mez

ﬁ.
1
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m Defining multiplcation and inversion as we expect, we have
m(xy) = m(x)m(y), m(x71) = 7(x) 7t
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LThe universal covering group

The universal covering group has an identity.

m Defining multiplcation and inversion as we expect, we have
m(xy) = m(x)m(y), m(x71) = 7(x) 7t
mletf:G— G, x— éx
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LThe universal covering group

The universal covering group has an identity.

m Defining multiplcation and inversion as we expect, we have
m(xy) = m(x)m(y), m(x71) = 7(x) 7t
mletf:G— G, x— éx

m 7o f(x) =7(é)n(x) = en(x) =n(x), so f is a lift of 7
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LThe universal covering group

The universal covering group has an identity.

m Defining multiplcation and inversion as we expect, we have
m(xy) = 7(x)m(y), m(x7) = 7(x)"".

] Letf:é—>(~§,x»—>éx

m 7o f(x) =7(é)n(x) = en(x) =n(x), so f is a lift of 7

m idz is also a lift of m
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LThe universal covering group

The universal covering group has an identity.

Defining multiplcation and inversion as we expect, we have
m(xy) = 7(x)m(y), m(x7) = 7(x)"".

Let f: G~—>(~§,xv—>éx

mo f(x) = 7m(€)r(x) = em(x) = m(x), so f is a lift of 7

idg is also a lift of m

these maps agree at € as f(€) = m(é,&) = é
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LThe universal covering group

The universal covering group has an identity.

m Defining multiplcation and inversion as we expect, we have
m(xy) = T(x)(y), wlx ) = 7(x)

Let f: G = G, x — éx

mo f(x) = 7m(€)r(x) = em(x) = m(x), so f is a lift of 7
idg is also a lift of

these maps agree at € as f(€) = m(é,&) = é

unique lifting property implies f is the identity, so éx = x
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LThe universal covering group

The universal covering group has an identity.

m Defining multiplcation and inversion as we expect, we have
7o) = 7()(y). 7l 1) = 7(x)

Let f: G = G, x — éx

mo f(x) = 7m(€)r(x) = em(x) = m(x), so f is a lift of 7
idg is also a lift of

these maps agree at € as f(€) = m(é,&) = é

unique lifting property implies f is the identity, so éx = x

similar proof shows xé = x
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(3) Multiplication in G is associative.

lLetaL,aR:@xéxé%é

ar(x,y, z) = (xy)z, ar(x,y, z) = x(yz)
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LThe universal covering group

(3) Multiplication in G is associative.

mleta,ar:GxGxG—=G
ar(x.y. z) = (xy)z, ar(x,y, 2) = x(yz)
m Both o, and ag are lifts of a(x, y, z) = w(x)7(y)m(z)
because

moay(x,y, z) = (m(x)n(y))n(z) = 7(x)(n(y)n(2)) = woar(x, y, z)
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m Both o, and ag are lifts of a(x, y, z) = w(x)7(y)m(z)
because

moay(x,y, z) = (m(x)n(y))n(z) = 7(x)(n(y)n(2)) = woar(x, y, z)

m These three maps agree at (&, €, €), so they are equal.
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(3) Multiplication in G is associative.
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because
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LThe universal covering group

(3) Multiplication in G is associative.

lLetaL,aR:@xéxé%é

ar(x,y, z) = (xy)z, ar(x,y, z) = x(yz)

m Both o, and ag are lifts of a(x, y, z) = w(x)7(y)m(z)
because

moay(x,y, z) = (m(x)n(y))n(z) = 7(x)(n(y)n(2)) = woar(x, y, z)

m These three maps agree at (&, €, €), so they are equal.

m Exercise: Similarly, show that x 1x = xx~! = &.

m So G is a group!
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LLie group homomorphisms

LThe universal covering group

(3) Multiplication in G is associative.

LetaL,aR:Gxéxé%é

ar(x,y, z) = (xy)z, ar(x,y, z) = x(yz)

Both oy and ag are lifts of a(x, y, z) = w(x)m(y)7(2)
because

moay(x,y, z) = (m(x)n(y))n(z) = 7(x)(n(y)n(2)) = woar(x, y, z)

These three maps agree at (&, €, €), so they are equal.
Exercise: Similarly, show that x 1x = xx~! = &.

So G is a group!

Problem 7-5: Show that the universal covering group is
unique up to Lie group isomorphism.
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Lie Groups

L Lie subgroups

Definition: Lie subgroup

A subgroup of G with a topology and smooth structure that makes
it an immersed submanifold of G.
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Theorem: Embedded subgroups are Lie subgroups.

m G=Lie group
m H C G is a subgroup and an embedded submanifold.
m Want to show multiplication and inversion are smooth.

m Recall 5.30, a smooth map to an manifold whose image is
contained in an embedded submanifold is smooth as a map to
the submaifold.
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L Lie subgroups

Theorem: Embedded subgroups are Lie subgroups.

G=Lie group
H C G is a subgroup and an embedded submanifold.
Want to show multiplication and inversion are smooth.

Recall 5.30, a smooth map to an manifold whose image is
contained in an embedded submanifold is smooth as a map to
the submaifold.

Multiplication is smooth as a map H x H — G and has image
contained in H, so it is also smooth as a map into H
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connected components.

m H=open subgroup in G
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L Lie subgroups

Theorem: Open subgroups of Lie groups are unions of
connected components.

m H=open subgroup in G

m H is embedded

m for all g, gH are the images under the diffeomorphism L, and
are therefore open in G

m So G — H is open, H is closed, and because H is open and
closed it must be a union of components
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Definition: The subgroup generated by S

The subgroup generated by a subset S C G is the smallest
subgroup containing S.
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L Lie subgroups

Definition: The subgroup generated by S

The subgroup generated by a subset S C G is the smallest
subgroup containing S.

Exercise

Show this subgroup is the set of all elements that can be written
as finite products of elements of S and their inverses.



Lie Groups

L Lie subgroups

Theorem: neighborhoods of the identity generate more
specific groups.

m Let W be an neighorhood of the identity of G.
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Lie Groups

L Lie subgroups

Theorem: neighborhoods of the identity generate more
specific groups.

m Let W be an neighorhood of the identity of G.
mLlet Wl= {g_l 1g € W}
mlet AB={ab:a€ A be B}.
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L Lie subgroups

W generates an open subgroup of G.

mlet Wi=WuUW!
mLet Wy =W W,_1 = Ug€W1Lg(Wk—1)

m W1 is open because inversion is a diffeomorphism
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L Lie subgroups

W generates an open subgroup of G.

Let Wi = WU W1
Let W, = Wi Wj_1 = UgEW1Lg(Wk—1)

W1 is open because inversion is a diffeomorphism

W is open because for all g, L, is a diffeomorphism
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L Lie subgroups

W generates an open subgroup of G.

Let Wy = WU W1

Let W, = Wi Wj_1 = UgEW1Lg(Wk—1)

W1 is open because inversion is a diffeomorphism
W is open because for all g, L, is a diffeomorphism

By the exercise mentioned before, H = U2 ; W, so is open.
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If W is connected, then it generates a connected open
subgroup of G.

m W1 is also connected because it is the image of W under a
diffeomorphism.
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in common and so is connected
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m W1 is also connected because it is the image of W under a
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m W U W1 is the union of two connected sets with the identity
in common and so is connected

m By induction, Wy = m(W; x Wj_1) is connected because m
is continuous.
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If W is connected, then it generates a connected open
subgroup of G.

m W1 is also connected because it is the image of W under a
diffeomorphism.

m W U W1 is the union of two connected sets with the identity
in common and so is connected

By induction, Wy = m(W; x Wy_1) is connected because m
is continuous.

m So H, the union of W, is connected because they all contain
the identity.
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L Lie subgroups

If W is connected, then it generates a connected open
subgroup of G.

m W1 is also connected because it is the image of W under a
diffeomorphism.

m W U W1 is the union of two connected sets with the identity
in common and so is connected

By induction, Wy = m(W; x Wy_1) is connected because m
is continuous.

m So H, the union of W, is connected because they all contain
the identity.

H is also closed as shown before, so if G is connected, then H = G.
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L Lie subgroups

The identity component

m Definition: the component Gy of G containing the identity



Lie Groups

L Lie subgroups

The identity component

m Definition: the component Gy of G containing the identity

m Problem 7-7: Gg is a normal subgroup of G and is the only
connected open subgroup. Every connected component of G
is diffeomorphic to Gp.
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m Let F: G — H be a Lie group homomorphism, so it has
constant rank.
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L Lie subgroups

Theorem: The kernel of a Lie group homomorphism is a
properly embedded Lie subgroup.

m Let F: G — H be a Lie group homomorphism, so it has
constant rank.

m Recall that each level set of a constant rank map is a properly
embedded submanifold of codimension rank F
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L Lie subgroups

Theorem: The kernel of a Lie group homomorphism is a
properly embedded Lie subgroup.

m Let F: G — H be a Lie group homomorphism, so it has
constant rank.

m Recall that each level set of a constant rank map is a properly
embedded submanifold of codimension rank F

m Applying this to ker F = F~1(&) and using that fact that
ker F is a subgroup gives us that it is a Lie subgroup
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homomorphism can be made into an immersed
submanifold.

m Let F: G — H be an injective Lie group homomorphism.
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L Lie subgroups

Theorem: The image of an injective Lie group

homomorphism can be made into an immersed
submanifold.

m Let F: G — H be an injective Lie group homomorphism.
m By the global rank theorem, F is a smooth immersion

m Recall 5.18, that the image of injective smooth immersions F
can be uniquely made into immersed submanifolds with F a
diffeomorphism onto the image.
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L Lie subgroups

Theorem: The image of an injective Lie group

homomorphism can be made into an immersed
submanifold.

Let F: G — H be an injective Lie group homomorphism.

By the global rank theorem, F is a smooth immersion

Recall 5.18, that the image of injective smooth immersions F
can be uniquely made into immersed submanifolds with F a
diffeomorphism onto the image.

F(G) is a Lie subgroup of H because G is a Lie group.
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L Lie subgroups

Theorem: The image of an injective Lie group

homomorphism can be made into an immersed
submanifold.

m Let F: G — H be an injective Lie group homomorphism.
m By the global rank theorem, F is a smooth immersion

m Recall 5.18, that the image of injective smooth immersions F
can be uniquely made into immersed submanifolds with F a
diffeomorphism onto the image.

m F(G) is a Lie subgroup of H because G is a Lie group.

m so F is a Lie group isomorphism
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of det : GL(n, R) — R* with rank n?> — 1 because det is surjective,
so is a smooth submersion and so any level set has codimension 1
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Examples: Embedded Lie subgroups of GL(n, R)

Example

GL*(n,R) C GL(n,R) is an open subgroup

Example

SL(n, R), the subset of GL(n, R) with determinant 1, is the kernel
of det : GL(n, R) — R* with rank n? — 1 because det is surjective,
so is a smooth submersion and so any level set has codimension 1

Example
B : GL(n, C) — GL(2n,R) defined by replacing each entry a+ ib

with the block Z _ab We can check that 3 is an injective Lie
group homomorphism whose image is a properly embedded

subgroup of GL(2n, R).
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S! € C* as it is a subgroup and an embedded submanifold




Lie Groups

L Lie subgroups

Examples with C

S! € C* as it is a subgroup and an embedded submanifold

SL(n, C) € GL(n, C) just as with the real case, but with dimension
2n* — 2.
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composition.
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GL(V)

m For V a real or complex vector space, GL(V) is a group under
composition.

m Any finite basis for V determines an isomorphism with
GL(n,R) or GL(n, C), so it's a Lie group

m The transition map between any two such isomorphisms is of
the form A — ABA™1, which is smooth, so there is a
diffeomorphism between them and the manifold structure on
GL(V) is coordinate-independent
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Example: non-embedded Lie subgroup

The dense curve in the Torus v : R — T? is an immersed Lie
subgroup b/c «y is an injective Lie homomorphism.
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The Lie Algebra of a Lie Group
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Lie Bracket

The Lie bracket of two vector fields X, Y is

[X, Y] f = XYf — YXf

m [X, Y] for X, Y smooth vector fields is a smooth vector field
m For F a diffeomorphism, F, [X, Y] = [F. X, F.Y]
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A vector field X on G is left-invariant if it is invariant under all left
translations, or it is Lg-related to itself for all g.
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d(Lg)n(Xn) = Xgn
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Definition
A vector field X on G is left-invariant if it is invariant under all left
translations, or it is Lg-related to itself for all g. Explicitly, for all
g. h,

d(Lg)n(Xn) = Xen

Because L, is a diffeomorphism, (L;).X is defined as

((Lg)«X)q = d(Lg)(L,)1(q)(X(L,)~1(q)), Which gives us the
equivalent condition

(Lg)X = X
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the set of left-invariant vector fields is closed under the Lie
bracket

(Le)« [X, YT = [(Lg): X, (Lg)- Y] = [X, Y]
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m Bilinear: for a, b € R, [aX + bY, Z] = a[X, Z] + b[Y, Z]
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Properties of the Lie Bracket

m Bilinear: for a, b € R, [aX + bY, Z] = a[X, Z] + b[Y, Z]
m Antisymmetric: [X, Y] = —[Y, X]
m Jacobi Identity: [X,[Y,Z]]+[Y,[Z, X]|+[Z,[X,Y]]=0
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Definition: Lie algebra

A Lie algebra over R is a real vector space g with a bracket from
g X g to g denoted (X, Y) — [X, Y] that is bilinear,
antisymmetric, and satisfies the Jacobi identity.
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g X g to g denoted (X, Y) — [X, Y] that is bilinear,
antisymmetric, and satisfies the Jacobi identity.

The Jacobi identity is a kind of substitute for associativity.
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Definition: Lie algebra

A Lie algebra over R is a real vector space g with a bracket from
g X g to g denoted (X, Y) — [X, Y] that is bilinear,
antisymmetric, and satisfies the Jacobi identity.

The Jacobi identity is a kind of substitute for associativity.

A Lie subalgebra is a linear subspace that is closed under the
bracket.
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Example

For a Lie group, Lie(G), the set of all left-invariant smooth vector
fields, is a Lie subalgebra of X(G) (which is a Lie algebra no
matter what).
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Examples: General vector space

m gl(V), the set of (not necessarily invertible) linear maps from
V to itself is a Lie algebra under the commutator bracket
[A,B]=AoB—BoA.
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Examples: General vector space

m gl(V), the set of (not necessarily invertible) linear maps from
V to itself is a Lie algebra under the commutator bracket
[A,B]=AoB—BoA.

m any vector space can be made into an abelian Lie algebra with
the zero bracket
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