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Starting on Page 150

Definition (Lie group)

A Lie group is a smooth manifold w/o boundary that is also a
group and the multiplication map m : G × G → G and inversion
i : G → G are smooth. Equivalently, the map (g , h) 7→ gh−1 is
smooth.

Remark

A Lie group is also a topological group.
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Example: GL(n,R)

an open submanifold of M(n,R)

multiplication smooth b/c entries are polynomials

inversion by Cramer’s rule (gives an algebraic formula for the
inverse)

similarly, GL(n,C) is a dimension 2n2 Lie group
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subgroup of GL(n,R) as closed b/c det(AB) = det(A) det(B),
det(A−1) = 1/ det(A)

open subset b/c is preimage of (0,∞) under det, which is
continuous

group operations are restrictions of operations of GL(n,R) so
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Basic Definitions

Examples: R∗,C∗

identifying R∗ with GL(1,R) shows that it is a 1-dimensional
Lie group, and the same goes for C∗.

R+ is an open subgroup of this, so it one as well.

S1 ⊂ C∗ is a group under complex multiplication. With
appropriate local coordinates, we can write multiplication and
inversion as (θ1, θ2) 7→ θ1 + θ2 and θ 7→ −θ (Problem 1-8), so
this is a Lie group.
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(with addition)
x − y

is linear and so smooth
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′
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Any group with the discrete topology is a topological group.

If the
group is countable, then it is 0-dim discrete Lie group.
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Example: Exp

exp : (R, +)→ (R∗, ∗) with image R+.

The inverse log gives a a Lie group isomorphism.

exp : (C, +)→ (C∗, ∗) is surjective but not injective.
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has kernel Z.
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Lie group homomorphisms

Example: det

GL(n,R)→ R∗

GL(n,C)→ C∗

are smooth b/c it is a polynomial of matrix entries of input, and is
a homomorphism b/c detAB = detA detB.
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conjugation Cg : G → G , h 7→ ghg−1 is smooth b/c multiplcation
and inversion are smooth.

This gives a Lie isomorphism as it has
inverse Cg−1 .
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Definition: Translation Maps

The translation maps Lg ,Rg : G → G are diffeomorphisms of G
with inverses Lg1 and Rg−1 .

Lg (h) = gh

Rg (h) = hg

are smooth because they are the composition of smooth maps

G G × G G
ιg m where ιg (h) = (g , h) and m is

multiplication.

The translation maps are smooth, transitive group
actions of G on itself.
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Lie group homomorphisms

Theorem: Every Lie group homomorphism has constant
rank.

Let F : G → H be a Lie group homomorphism

Let e, ẽ be the identities of G and H

Let g0 ∈ G

F homomorphism implies

F (Lg0(g)) = F (g0g) = F (g0)F (g) = LF (g0)(F (g))

or F ◦ Lg0 = LF (g0) ◦ F

dFg0 ◦ d(Lg0)e = d(Lf (g0))ẽ ◦ dFe

Lk for any k is a diffeomorphism so the d(Lk) maps above are
linear isomorphisms.

Composing a linear map with a linear isomorphism does not
change the rank, so rank dFg0 = rank dFe
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Lk for any k is a diffeomorphism so the d(Lk) maps above are
linear isomorphisms.

Composing a linear map with a linear isomorphism does not
change the rank, so rank dFg0 = rank dFe



Lie Groups

Lie group homomorphisms

Theorem: A Lie group homomorphism is a Lie group
isomorphism iff it is bijective.

The global rank theorem says that b/c F is bijective and has
constant rank, it is a diffeomorphism, and this inverse is a Lie
homomorphism by definition.
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Lie group homomorphisms

The universal covering group

G has a universal covering group.

For manifolds, the universal cover is a smooth manifold and
the covering map is smooth.

For Lie groups, we’ll show that the universal cover is also a
Lie group, and the covering map is a Lie homomorphism.

Let π : G̃ → G be a smooth covering map.

Note that π × π : G̃ × G̃ → G × G is a smooth covering map.

By the lifting criterion, m ◦ (π × π) lifts uniquely to a map m̃
with m(ẽ, ẽ) = ẽ and such that the diagram commutes.

G̃ × G̃ G̃

G × G G

m̃

π×π π

m
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Lie group homomorphisms

The universal covering group

Lifted multiplication and inversion are smooth. (2)

Exercise: Let M,N,P be smooth manifolds, F : M → N be a
local diffeomorphism. If G : P → M is continuous, then G is
smooth iff F ◦ G is smooth.

Because π is a local diffeomorphism and π ◦ m̃ is smooth, m̃ is
smooth.

Similarly, there is a smooth lift ι̃ such that ι̃(ẽ) = ẽ and the
diagram below commutes:

G̃ G̃

G G

ĩ

π π

i
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diagram below commutes:

G̃ G̃

G G

ĩ
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Lie group homomorphisms

The universal covering group

The universal covering group has an identity.

Defining multiplcation and inversion as we expect, we have
π(xy) = π(x)π(y), π(x−1) = π(x)−1.

Let f : G̃ → G̃ , x 7→ ẽx

π ◦ f (x) = π(ẽ)π(x) = eπ(x) = π(x), so f is a lift of π

idG̃ is also a lift of π

these maps agree at ẽ as f (ẽ) = m̃(ẽ, ẽ) = ẽ

unique lifting property implies f is the identity, so ẽx = x

similar proof shows xẽ = x
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unique lifting property implies f is the identity, so ẽx = x
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Lie group homomorphisms

The universal covering group

(3) Multiplication in G̃ is associative.

Let αL,αR : G̃ × G̃ × G̃ → G̃

αL(x , y , z) = (xy)z ,αR(x , y , z) = x(yz)

Both αL and αR are lifts of α(x , y , z) = π(x)π(y)π(z)
because

π◦αL(x , y , z) = (π(x)π(y))π(z) = π(x)(π(y)π(z)) = π◦αR(x , y , z)

These three maps agree at (ẽ, ẽ, ẽ), so they are equal.

Exercise: Similarly, show that x−1x = xx−1 = ẽ.

So G̃ is a group!

Problem 7-5: Show that the universal covering group is
unique up to Lie group isomorphism.



Lie Groups

Lie group homomorphisms

The universal covering group

(3) Multiplication in G̃ is associative.

Let αL,αR : G̃ × G̃ × G̃ → G̃

αL(x , y , z) = (xy)z ,αR(x , y , z) = x(yz)

Both αL and αR are lifts of α(x , y , z) = π(x)π(y)π(z)
because

π◦αL(x , y , z) = (π(x)π(y))π(z) = π(x)(π(y)π(z)) = π◦αR(x , y , z)

These three maps agree at (ẽ, ẽ, ẽ), so they are equal.
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Exercise: Similarly, show that x−1x = xx−1 = ẽ.

So G̃ is a group!

Problem 7-5: Show that the universal covering group is
unique up to Lie group isomorphism.
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Lie subgroups

Definition: Lie subgroup

A subgroup of G with a topology and smooth structure that makes
it an immersed submanifold of G .
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Lie subgroups

Theorem: Embedded subgroups are Lie subgroups.

G=Lie group

H ⊂ G is a subgroup and an embedded submanifold.

Want to show multiplication and inversion are smooth.

Recall 5.30, a smooth map to an manifold whose image is
contained in an embedded submanifold is smooth as a map to
the submaifold.

Multiplication is smooth as a map H × H → G and has image
contained in H, so it is also smooth as a map into H
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Theorem: Open subgroups of Lie groups are unions of
connected components.

H=open subgroup in G

H is embedded

for all g , gH are the images under the diffeomorphism Lg and
are therefore open in G

So G − H is open, H is closed, and because H is open and
closed it must be a union of components
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Definition: The subgroup generated by S

The subgroup generated by a subset S ⊂ G is the smallest
subgroup containing S .

Exercise

Show this subgroup is the set of all elements that can be written
as finite products of elements of S and their inverses.
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Theorem: neighborhoods of the identity generate more
specific groups.

Let W be an neighorhood of the identity of G .

Let W−1 =
{
g−1 : g ∈W

}
.

Let AB = {ab : a ∈ A, b ∈ B}.
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W generates an open subgroup of G .

Let W1 = W ∪W−1

Let Wk = W1Wk−1 = ∪g∈W1Lg (Wk−1)

W−1 is open because inversion is a diffeomorphism

Wk is open because for all g , Lg is a diffeomorphism

By the exercise mentioned before, H = ∪∞k=1Wk , so is open.
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If W is connected, then it generates a connected open
subgroup of G .

W−1 is also connected because it is the image of W under a
diffeomorphism.

W ∪W−1 is the union of two connected sets with the identity
in common and so is connected

By induction, Wk = m(W1 ×Wk−1) is connected because m
is continuous.

So H, the union of Wk , is connected because they all contain
the identity.

H is also closed as shown before, so if G is connected, then H = G .
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The identity component

Definition: the component G0 of G containing the identity

Problem 7-7: G0 is a normal subgroup of G and is the only
connected open subgroup. Every connected component of G
is diffeomorphic to G0.
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Theorem: The kernel of a Lie group homomorphism is a
properly embedded Lie subgroup.

Let F : G → H be a Lie group homomorphism, so it has
constant rank.

Recall that each level set of a constant rank map is a properly
embedded submanifold of codimension rankF

Applying this to ker F = F−1(ẽ) and using that fact that
ker F is a subgroup gives us that it is a Lie subgroup
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Theorem: The image of an injective Lie group
homomorphism can be made into an immersed
submanifold.

Let F : G → H be an injective Lie group homomorphism.

By the global rank theorem, F is a smooth immersion

Recall 5.18, that the image of injective smooth immersions F
can be uniquely made into immersed submanifolds with F a
diffeomorphism onto the image.

F (G ) is a Lie subgroup of H because G is a Lie group.

so F is a Lie group isomorphism
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Examples: Embedded Lie subgroups of GL(n,R)

Example

GL+(n,R) ⊂ GL(n,R) is an open subgroup

Example

SL(n,R), the subset of GL(n,R) with determinant 1, is the kernel
of det : GL(n,R)→ R∗ with rank n2 − 1 because det is surjective,
so is a smooth submersion and so any level set has codimension 1

Example

β : GL(n,C)→ GL(2n,R) defined by replacing each entry a + ib

with the block

[
a −b
b a

]
We can check that β is an injective Lie

group homomorphism whose image is a properly embedded
subgroup of GL(2n,R).
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Example

S1 ⊂ C∗ as it is a subgroup and an embedded submanifold

Example

SL(n,C) ⊂ GL(n,C) just as with the real case, but with dimension
2n2 − 2.
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GL(V )

For V a real or complex vector space, GL(V ) is a group under
composition.

Any finite basis for V determines an isomorphism with
GL(n,R) or GL(n,C), so it’s a Lie group

The transition map between any two such isomorphisms is of
the form A 7→ ABA−1, which is smooth, so there is a
diffeomorphism between them and the manifold structure on
GL(V ) is coordinate-independent
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Example: non-embedded Lie subgroup

The dense curve in the Torus γ : R→ T2 is an immersed Lie
subgroup b/c γ is an injective Lie homomorphism.
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Lie Bracket

The Lie bracket of two vector fields X ,Y is

[X ,Y ] f = XYf − YXf

[X ,Y ] for X ,Y smooth vector fields is a smooth vector field

For F a diffeomorphism, F∗ [X ,Y ] = [F∗X ,F∗Y ]
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The Lie Algebra of a Lie Group

Definition

A vector field X on G is left-invariant if it is invariant under all left
translations, or it is Lg -related to itself for all g .

Explicitly, for all
g , h,

d(Lg )h(Xh) = Xgh

Because Lg is a diffeomorphism, (Lg )∗X is defined as
((Lg )∗X )q = d(Lg )(Lg )−1(q)(X(Lg )−1(q)), which gives us the
equivalent condition

(Lg )∗X = X
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The Lie Algebra of a Lie Group

the set of left-invariant vector fields is closed under the Lie
bracket

(Lg )∗ [X ,Y ] = [(Lg )∗X , (Lg )∗Y ] = [X ,Y ]
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The Lie Algebra of a Lie Group

Properties of the Lie Bracket

Bilinear: for a, b ∈ R, [aX + bY ,Z ] = a [X ,Z ] + b [Y ,Z ]

Antisymmetric: [X ,Y ] = − [Y ,X ]

Jacobi Identity: [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0
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The Lie Algebra of a Lie Group

Definition: Lie algebra

A Lie algebra over R is a real vector space g with a bracket from
g× g to g denoted (X ,Y ) 7→ [X ,Y ] that is bilinear,
antisymmetric, and satisfies the Jacobi identity.

Remark

The Jacobi identity is a kind of substitute for associativity.

A Lie subalgebra is a linear subspace that is closed under the
bracket.
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The Lie Algebra of a Lie Group

Example

For a Lie group, Lie(G ), the set of all left-invariant smooth vector
fields, is a Lie subalgebra of X(G ) (which is a Lie algebra no
matter what).
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The Lie Algebra of a Lie Group

Examples: General vector space

gl(V ), the set of (not necessarily invertible) linear maps from
V to itself is a Lie algebra under the commutator bracket
[A,B] = A ◦ B − B ◦ A.

any vector space can be made into an abelian Lie algebra with
the zero bracket
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