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Langevin Dynamics Introduction

Hamiltonian dynamics gives
. OH . OH

In molecular dynamics, usually H= p"M~1p/2 + U(q) for M a
diagonal mass matrix. So the dynamics read

g=MT'p p=—-VU(q)

However, systems we usually want to consider don't exist in a
vacuum; they experience frictional forces and their statistical
behavior changes with temperature.



Langevin Dynamics Equation

dg= M1pdt
dp = —VU(q) dt — ypdt + /2vkg TM"/2 dW

where
m q,p € RY Wis d-dimensional Brownian motion, U: R? — R
m M represents the masses of a system of particles
m U is the potential energy

kg is Boltzmann's constant

T is temperature

~y is the friction coefficient or collision rate, with units 1/time



Relationships with Other Common Dynamics Equations

m We can derive Brownian dynamics as the overdamped limit of
Langevin dynamics where we let v= M~!p, assume
dp/dt =0, and solve for g:

dg = -y '"M 'V U(q) dt + /2kgy L TM~1/2 AW
m We can decompose Langevin dynamics as

q\ _ M-1p 0 0
d (p) = ( 0 ) de+ (—VU(q)) de+ (—7pdt+ oML/2 dw>

A B 0

O gives the Ornstein-Uhlenbeck equation.



The Generator

For ¢ € C? a suitable function that decays to 0 exponentially with
x, 1t0’s rule states

dp(x) = ¢'()(AX) dt + g(x) AW) + %QS”(X)g(X)Q dt
Then the expectation satisfies

d

SE@000) =B(£o)) = | Z<c¢><x>p<x7 £) dx

where £ = f{ ) + 3g(x x)2 2 8 == is a linear operator, the generator of
the stochastic process.



The Kolmogorov Operator

From the proof of the Fokker-Planck equation, we have
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(£6.9) = (019 = [ (=5 (Ro0plx ) + 5 175 (00%) ) dx

—00

where £, the Kolmogorov operator, is the adjoint of the generator
operator and when acting on p gives the right hand side of the

Fokker-Planck equation

8t_£p

If g(x) = 0, then £ and LT coincide with the Lie derivative and the
Liouvillian, respectively.



Drift and Minorization Method

Let dX = Ydt+ >, Xjdw;. Let Pi(x, A) = P(x(t) € Alx(0) = x).
(Drift) There exists a radially unbounded Lyapunov function
satisfying for some constants o, > 0 and all x&€ D

Lo< —ap+6

Thenlet C={xe D: p(x) <25/(y—a)}.

(Minorization) There exists a sampling rate T, n > 0, and a
probability measure v on C such that Pr(x,A) > nv(A).

Then there exists a unique invariant measure p, with £fp, = 0 and
there exist k, A such that for all suitable fwith |f] < ¢,

(exp(e£)AXo — /D A2)pu(2) dz| < kexp(—At)p(x0)



Proving Minorization

Equivalent to

There exists a y € int C such that for all 4 > 0, there exists a
t with Py(x, Bs(y)) > 0.

For all t, there exists a C° density pe(x, y), i.e. for all x € C,
B(R") N B(C),

Pi(x, A) = /A pelx, ) dy

By Hérmander's Theorem, the second assumption is equivalent to
Hormander's condition, which we used previously in the context of
Chow's theorem for local controllability.

Hoérmander's Condition: the ideal generated by {Xi,..., Xx} in
{Y, X1, ..., Xm} 4 spans R” for all x



Application to Langevin Dynamics

m For Langevin dynamics, if M = |, we can use the Lyapunov
function(s) H'(q, p) = (1||p||*> + U(q))l for | a positive integer.

m We want / to vary so that the condition || < H' can hold for
many observables f.

_ p 1/2 _\d
Let Y= and /29kg TM*=dW = > "5, X;dW,,

(—w— VU<q>> VEike i
so X; = (0, p;) T for p; € R?. Then for Hérmander's Condition, we

[Xi, Y] = (DY, Xi) = <—d2(;J(q) _Iyl> (,g,-) - <—ﬁ;ipi>

so {X1,...,Xq,[X1, Y],...,[Xq, Y]} spans R,



Canonical Distribution

m The canonical NVT ensemble is a natural system to study for
molecular dynamics

m Let pg(q,p) = Z ' exp(—BH'(q,p)), the
Boltzmann/canonical distribution, where Z is the canonical
partition function Z = fD exp(—SBH(q, p)) dx.

m We can verify ﬁTLDPB = 0, so this is the measure with respect
to which Langevin dynamics are ergodic.

m Therefore, we can study the canonical distribution with
Langevin dynamics using different observables f



Splitting Methods

Recall that we can decompose Langevin dynamics as

q\ _ M-1p 0 0
d <p> = ( 0 ) de+ <—VU(q)> de+ <—’ypdt+ o ML/2 dw)

A B 0

This yields updates individually as

Up (g, p) = (q+hM'p, p)
Ug(q,p) = (q,p— hVU(q))

UP(q,p) = (g, ""p + \/kBT(l — e 27 M'/2R)

where R is a vector of d i.i.d. normal random numbers.



Splitting Methods Continued

We define splitting methods in the following fashion:

BABO 0,/B 7,A;,B
UpPhOl =y Uy oy Uy, o
Different splitting schemes produce different results, for example
consider the 1D harmonic oscillator with spring constant 22, so
U(q) = Q%¢%/2, v = 0. We find the long term averages satisfy

Scheme | (¢*)n/{(d*) | (P")n/(P°) (ap)n
[ABOBA] | 1 (1—-hQ2%/4am)~1 |0
[OABAQ] | 1 — h?Q%/4m | 1 0
[BAOA] |1 1 O(h)




Correction Functions

The averages we compute (), of observables are only
approximations of (¢). How can we analyze the accuracy of these
values?

Suppose p = pg(1 + hfy + h*f + h*f3 + O(h*)) where fi(q, p) are
correction functions satisfying fD fkps dx = 0 so that the partition
function is preserved, [,pdx= [,pgdx.

(@)n = /Dwsdx

= / oppdx+ h/ ofpg + O(h?)
D D
= (&) + h(eh) + h*(oh) + O(h")

Therefore, we would like to compute the correction functions f;.



Computing f;: First Try

Now let's assume that £f = £I + hLl + W2LL + O(h?) for some
perturbation operators E,T. Then in solving for a stationary solution
to the Fokker-Planck equation, we have ﬁTﬁ =0, or

(£l + he] + LY+ O()) (ps(1 + b + Kh + Hfs + O(h'))) =0
from which we obtain the first-order approximation

Ll o(psfi) + Lips = 0as L ;ps = 0. If we know L], then we can
solve this at least numerically for f;.



Application to [OBA]

exp(hﬁJﬁOBAﬂ) = exp(hﬁL) exp(h[%) exp(hﬁ%)

0 0 o2 92
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The BCH formula gives

ch =

A h
EEOBA]] = £L+£E+£E+§ ([d\v LH + L), £ + 12k, ﬁTo])+O(h2)

where [-, -] is the commutator bracket.



[OBA] Continued

Then letting the first order approximation of this be L, we find

that [OBA] behaves like it's solving the PDE p; = Lp where

A h

Lhp=rciyp+ 5 (=PU"(@)pg + U(@)pg +1ppg + 0”pap + 71U (9)pp)
+ O(h%)

Therefore, this scheme is amenable to the correction function
method!



Numerical Simulation

Biased Double-well Potential Define the biased
double-well potential
U(g) = (¢* = 1)* + q/2.

mlet M=p5=1.

i m Let
i (g, p) = p* — qU'(q) + 2qp.
" m Then (v) = 0.
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Results

Averages
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Figure: Averages over 3 Trials, each over a total time of 10000 units.
Observe that for v = 2, the [BOA] scheme has very low error.



[BOA] Scheme Result Explanation

We can explain this rigorously using the correction function
method because

(V1 1BoA]) = §/RQ vy U(a) + pU () — C)ps(g, p) dx = 2

where ¢ =v(U(q)).
So the first order correction is 0 for v = 2, hence we are observing

accurate results up to second order! Therefore, in practice the
choice of method can depend on the value of .



Conclusion

m Langevin dynamics arises naturally from physical
considerations.

m It is geometrically ergodic.
m We can find various splitting methods for its SDE.

m These splitting methods can be analyzed with correction
functions.

m The proofs of these facts use many of the same tools we
studied this semester.



Questions

Thanks for listening! Any questions?
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