
Environment Dynamics Synthesis
Reintegrating AI Project Final Paper

Jefferson Bernard Cruz Fernandez Thomas Kim
Aaron Kirtland Shane Parr

May 10, 2023

Abstract

This paper presents a novel approach for building reinforcement learn-
ing (RL) agents that use program synthesis to learn environment dynam-
ics, a process that is often data-inefficient and slow when relying on rep-
etition. We utilize a domain-specific language (DSL), RLang, along with
program synthesis tools, DreamCoder and Stitch, to fill in missing en-
vironment dynamics. This method is demonstrated on various Markov
environments, with results indicating that program synthesis can handle
simple cases efficiently, but struggles with larger or more complex envi-
ronments unless given almost complete input. We conclude with potential
improvements and future research directions, such as integrating a cur-
riculum of training sets for the learning agent and modelling the reward
function. This study contributes to AI research by integrating program
synthesis, model-learning for RL, and DSLs, with potential for faster gen-
eralization from few samples, thereby improving data efficiency.

1 Introduction and Related Work

In this work, we combined a domain specific language (DSL), RLang, with
program synthesis for the purpose of building a reinforcement learning (RL)
agent that uses program synthesis to learn environment dynamics. Currently,
RL agents rely on repetition to learn state-action-state transition functions.
These methods tend to be data-inefficient and lead to slow exploration. Using
program synthesis, RL agents may be able to complete their transition functions
using a more generalized and data-efficient method.

This project combines three distinct AI components: DSLs, program syn-
thesis, and RL.

1.1 DSL: RLang

By enabling commands at a higher level than general purpose languages, DSLs
provide more direct, expressive, and efficient means to solve domain-specific

1

problems. In this work, we use RLang [4] to communicate domain knowledge
to an RL agent. RLang is very useful for describing RL environments, as it can
specify information about every element of a Markov Decision Process (MDP),
such as features of the state space, transitions, and actions.

Tools similar to RLang include BabyAI and Video Game Description Lan-
guage (VGDL). BabyAI [2] provides a DSL for each of its environments, but
the DSL is primarily used for goal specification rather than modeling transition
dynamics. VGDL [5] can conveniently describe game-like MDPs, namely those
that are structured on a grid with certain dynamics like in video games, but is
limited in its expressive power compared to RLang.

1.2 Program Synthesis: DreamCoder and Stitch

For program synthesis, we primarily used DreamCoder [3]. DreamCoder is a
powerful method for learning new tasks through several phases of hierarchical
abstraction. The phases we focus on are the Wake and “Sleep: Abstraction”
phases. In the Wake phase, DreamCoder enumerates programs created from
primitive and invented programs in a library L that may fit the observed input
and output data. In the Sleep: Abstraction phase, the algorithm compresses
observed programs found during Wake to create a new library L′. In doing
so, DreamCoder is able to learn complex tasks such as manipulating lists and
drawing in Logo. However, it is extremely compute and memory hungry, relying
on many repetitions to achieve the desired output.

Stitch [1] is a recent program aimed to improve the Sleep: Abstraction phase.
It implements a corpus-based top-down synthesis and runs in both Python and
Rust, and is faster than the part of DreamCoder it replaces by at least two
orders of magnitude.

1.3 Reinforcement Learning

Third, we combine a DSL for MDPs with program synthesis for learning in an
RL setting. While many works have used program synthesis to learn policies [7],
comparatively fewer works have applied it to learning environment dynamics.
In fact, we found just one paper that does this applied to learning VGDL [6].
Unfortunately, because VGDL is limited in the scope of MDPs that it describes
(see above), this work does not explore the possibility of learning environment
dynamics sufficiently robustly. RLang is built to handle a larger scope of MDPs
(see above) and additionally has simpler syntax than VGDL, which we suspect
may help program synthesis learn more easily. Lastly, Schneider’s work was too
slow to be feasible for realistic programs.

2 Environment Dynamics Synthesis

The following steps outline the algorithm we developed in order to fill in missing
environment dynamics using RLang and DreamCoder.

2

Algorithm 1 Environment Dynamics Synthesis

1: procedure EnvironmentDynamicsSynthesis(RLang Partial Dynamics
Specification)

2: while RLang model incomplete do
3: The following two steps can occur in parallel:
4: Convert RLang to λ calculus
5: Train an agent with the partial RLang model and gather transitions

from episodes
6: Run DreamCoder with λ calculus and transition data inputs to pro-

duce a filled in transition model.
7: Convert this transition model back to a partial RLang model.
8: end while
9: end procedure

Our method is visualized in the diagram in Fig. 1.

Figure 1: Our method can be visualized as a loop of RLang and lambda calculus,
with RL and DreamCoder acting as intermediary components. RLang is fed into
two programs in parallel, which produces lambda calculus and transition data
with DreamCoder uses to produce a complete lambda calculus program. The
lambda calculus is then converted back into RLang for execution.

Next, we will explain each step of our implementation in more detail.

3

2.1 RLang to λ calculus

The allowable syntax for Stitch is well-defined and we must convert at least the
transition function aspects of the RLang syntax to it [1]. This is clearly possible
because transitions will form a computable function between S×A×S → [0, 1],
and lambda calculus can be used to represent any computable function.

We developed a script that takes an RLang file as input and outputs the
Effects described in the file (the transition and reward functions) in a lambda
calculus format. This allows us to extract transition information from RLang
files and input them to Stitch and DreamCoder.

An example translation is shown below: Example 1: An RLang file rep-
resenting a simple Gridworld environment with four actions and their effects
described. The λ calculus translation of it using the script we developed is
shown below.

Constant dim := 3

Factor position := S[0, 1]

Factor ox := position[0]

Factor oy := position[1]

Effect action_effect:

if a == 0:

ox -> ox

oy -> if oy == dim-1:

oy -> oy

else:

oy -> oy + 1

elif a == 1:

ox -> ox

oy -> if oy == 0:

oy -> oy

else:

oy -> oy - 1

elif a == 2:

ox -> if ox == 0:

ox -> ox

else:

ox -> ox - 1

oy -> oy

elif a == 3:

ox -> if ox == dim-1:

ox -> ox

else:

ox -> ox + 1

oy -> oy

4

λ Calculus translation:

(if (eq? $0 0) (cons $3 (cons (if (eq? $1 $2) $1 (+ $1 1)) empty))

(if (eq? $0 1) (cons $3 (cons (if (eq? $1 0) $1 (- $1 1)) empty))

(if (eq? $0 2) (cons (if (eq? $3 0) $3 (- $3 1)) (cons $1 empty))

(if (eq? $0 3) (cons (if (eq? $3 $2) $3 (+ $3 1)) (cons $1 empty ()))))

2.2 Running agent with partial RLang model

In order to collect transition data for learning a model, we used the Simple RL
library. We ran QLearning for 5000 timesteps, collected the (s, a, s′) tuples for
each observed transition, randomized the order, and passed it to DreamCoder
as a program synthesis task.

2.3 DreamCoder

Specifying a DreamCoder domain essential requires two parts, specifying prim-
itives for programs, and specifying tasks.

Each program in a DreamCoder program library is composed of primitives.
For the experiments mentioned in this paper, these include “0” , “1”, “2”, “3”,
“4” , “5”, “6”, “7”, “8”, “9”, “-1”, “increment”, “decrement”, “eq?”, “if”,
“emptylist”, “cons”, “index”, “add”, and “mod”. DreamCoder primitives must
be defined in both OCaml and Python, and we chose these primitives because
they had preexisting OCaml definitions in the code base.

To specify the task list, we did two things. First, we wrote Python programs
to generate input-output pairings that DreamCoder tries to learn. Second,
we also specify tasks by reading in input-output transition data from RLang
episodes. We input an observed (state, action) pair as a (x-coordinate, y-
coordinate, action) tuple of integers, and output an (x-coordinate, y-coordinate)
tuple of integers. We then copy the output of DreamCoder into the script for
the next stage.

2.4 λ calculus to RLang

We have written a second script to convert λ calculus back to RLang. This
is fairly straightforward and simply the reverse of the previous RLang to λ
calculus script we mentioned. This allows us to ingest the λ calculus output
from DreamCoder/Stitch and translate it back to RLang, therefore completing
the loop illustrated in Figure 1.
Example 1: A λ calculus expression describing a simple Gridworld transition
function with 4 actions. The output of the λ calculus to RLang script on this
input is shown below.

(if (eq? $0 0)

(cons $3 (cons (if (eq? $1 $2) $1 (+ $1 1)) empty))

(if (eq? $0 1)

(cons $3 (cons (if (eq? $1 0) $1 (- $1 1)) empty))

5

(if (eq? $0 2)

(cons (if (eq? $3 0) $3 (- $3 1)) (cons $1 empty))

(if (eq? $0 3) (cons (if (eq? $3 $2) $3 (+ $3 1)) (cons $1 empty)) ()))))

RLang translation

if param0 == 0:

[param3, if param1 == $2):

param1

else:

param1 + 1]

else:

if param0 == 1:

[param3, if param1 == 0:

param1

else:

param1 - 1]

else:

if param0 == 2:

[if param3 == 0:

param3

else:

param3 - 1, param1]

else:

if param0 == 3:

[if param3 == param2):

param3

else:

param3 + 1, param1]

2.5 Experimental design

Our primary experiment uses an n× n grid Block World. However, in total we
ran DreamCoder on the following MDP-like environments:

• Hallway with single action that moves agent to the right and wraps around.

• Hallway with single action that moves agent to the left and wraps around.

• Agent must produce x+ y given inputs x and y.

• d× d gridworld that wraps around (on a torus)

• d× d gridworld that does not wrap around (standard)

We observed that DreamCoder can very quickly synthesize the dynamics
for the first three cases, while the latter two cases are considerably harder for
it. Additionally, we find that DreamCoder has very similar results whether
the observed state transitions were generated by a random program directly

6

Components Project status
Attempted Completed

RLang-λ Converter ✓ ✓
RL running on RLang domain ✓ ✓
DreamCoder running on simple inputs ✓ ✓
DreamCoder running on RL Data ✓ ✓
λ-RLang Converter ✓ ✓

Table 1: Overall project status (updated)

by sampling random states and actions or by trajectories from the Simple RL
agent.

We achieve good results on spaces with large programs (our gridworld tran-
sition program has around 40-50 primitives) by including in the library a nearly
complete transition function with one or two holes, or missing primitives. Doing
so, we were able to get DreamCoder to synthesize large d× d gridworlds, while
without this hint, DreamCoder could not finish. This suggests that the prob-
lem is related to program depth and explosion of possibilities, versus not being
able to successfully represent our target functions using the primitives that we
implemented at all. This is also evidenced by the fact that DreamCoder was
often able to complete environments in which d was relatively small, i.e. able
to be expressed with few primitives like the numbers 1 through 10, but with
d ≥ 11, more primitives are required, and it sometimes failed to find solutions.

3 Conclusion

3.1 Future Work

From this project, we have found that program synthesis is generally very dif-
ficult, and writing program synthesis libraries is quite a struggle. While we
initially naively expected DreamCoder to be able to solve a 2×2 gridworld with
little issue, we found that it was unsuccessful at learning the correct transition
function until we gave it nearly the complete input. This is because synthesizing
the correct solution requires synthesizing a long 40-primitive description-length
program, as mentioned above. We anticipate that further experimentation with
the DreamCoder hyperparameters may assist it, but the largest improvement
would come from having a curriculum of training sets to learn to program. We
predict that DreamCoder would do much better if we prepared simple environ-
ments requiring it to learn primitives such as “create a list from the two inputs”
rather than having to reimplement “cons input1 (cons input2 emptylist)”. How-
ever, this would take an extensive period of time to run (the original Dream-
Coder experiments took months), and it would take some effort to create a
sufficiently robust set of training tasks. More concretely, the original Dream-
Coder list task sets had as many as 100 distinct tasks; we predict that the agent
in this situation may be able to make further progress in learning the environ-

7

ment dynamics if they were, similarly, exposed to data from many environments
simultaneously. This is the future work we would like to explore next by writing
a set of many basic environments in RLang.

Second, in this work, we focused only on modelling the transition function,
while in the future we would like to model the reward function as well. This
is a straightforward change that increases the complexity of the DreamCoder
computations, but does not change much fundamentally. Third, we would like
to remove the manual copy-pasting between loop steps to have the RLang world
model seamlessly update after DreamCoder updates. Fourth, we would like to
use Stitch to make the compression phase of DreamCoder faster. Like many
parts of DreamCoder, the PyStitch code that enables this cooperation is a pro-
totype version not written with the intention of outside use, and thus editing it
requires substantial effort. However, the payoff is a compression library faster
by orders of magnitude. Lastly, we eagerly await advances in program synthesis
to enable DreamCoder-like algorithms for probabilistic environments.

3.2 Code Availability

Our RLang and λ-calculus converter scripts are available now at https://

github.com/jbernar3/synthesize-env-dynamics. Our code for the remain-
ing parts involving Simple RL and DreamCoder will be available in the next
few days.

3.3 Final Thoughts

In conclusion, we integrated several distinct areas of AI research: program syn-
thesis, model-learning for model-based RL, and domain specific languages. Pro-
gram synthesis provides the potential for fast generalization from few samples
during the expensive data collection phase of reinforcement learning. Reaching
high performance in a time and data efficient manner is critical for achieving
real-world applicability. Once a learned program represents the environment in
simulation, model-free RL has a reliable source and size of samples it can use to
solve the problem. Finally, RLang provides a flexible and rigorous language with
which to connect the components, being one of the few DSLs which supports
partial transition dynamics.

References

[1] Matthew Bowers et al. “Top-down synthesis for library learning”. In: Pro-
ceedings of the ACM on Programming Languages 7.POPL (2023), pp. 1182–
1213.

[2] Maxime Chevalier-Boisvert et al. “Babyai: A platform to study twhe sample
efficiency of grounded language learning”. In: arXiv preprint arXiv:1810.08272
(2018).

8

[3] Kevin Ellis et al. “Dreamcoder: Growing generalizable, interpretable knowl-
edge with wake-sleep bayesian program learning”. In: arXiv preprint arXiv:2006.08381
(2020).

[4] Rafael Rodriguez-Sanchez et al. “RLang: A Declarative Language for Ex-
pression Prior Knowledge for Reinforcement Learning”. In: arXiv preprint
arXiv:2208.06448 (2022).

[5] Tom Schaul. “A video game description language for model-based or inter-
active learning”. In: 2013 IEEE Conference on Computational Inteligence
in Games (CIG). IEEE. 2013, pp. 1–8.

[6] Martin Franz Schneider. “Program synthesis approaches to improving gen-
eralization in reinforcement learning”. PhD thesis. Massachusetts Institute
of Technology, 2020.

[7] Yichen Yang et al. “Program synthesis guided reinforcement learning for
partially observed environments”. In: Advances in neural information pro-
cessing systems 34 (2021), pp. 29669–29683.

9

